The DRI (Dietary Reference Intake) is 0.8 grams of protein per kilogram of body weight, or 0.36 grams per pound.  This amounts to:

* 56 grams per day for the average sedentary man.
* 46 grams per day for the average sedentary woman.

As I noted in a prior post (Overfeeding Studies) minimum protein requirements are determined by nitrogen studies which typically give standard diets with adjusted protein contents until excess nitrogen is produced in the urine. This indicates that the person is in a positive protein intake since the excess protein is being expelled as urea (nitrogen).

The problem is the standard diet is used for the baseline which includes carbohydrates. In the standard diet glucose needs are completely met from carbohydrates. In a Low Carb diet glucose needs come from fat and protein in the diet (via GNG).

It is important to determine if the Dietary Recommended Intake (DRI) for protein is adequate for people on a Low Carb Diet (Protein Intake – How Much Protein Should You Eat Per Day?).

So how should we determine if those are adequate levels for a person on a low carb diet? Protein Sparing Modified Fasts (PSMF) are low carb diets which also are low fat. They are typically higher levels of protein with the intent of preserving Lean Body Mass (LBM) in the face of a high caloric deficit. There is a study which determined the Protein needs via nitrogen balance on the PSMF diet (Bruce R Bistrian, George L Blackburn, Jean-Pierre Flatt, Jack Sizer, Nevin S Scrimshaw, Mindy Sherman. Nitrogen Metabolism and Insulin Requirements in Obese Diabetic Adults on a Protein-Sparing Modified Fast. Diabetes Jun 1976, 25 (6) 494-504).

 In the three patients who had extensive nitrogen-balance studies, balance could be maintained chronically by 1.3 gm. protein per kilogram IBW, despite the gross caloric inadequacy of the diet.

This seems like a reasonable approximation for the minimal protein needs on a Low Carbohydrate Diet. The number 1.3g/kg of body weight is significantly more than 0.8g/kg of body weight. A 200 lb (100kg) person would need to eat a minimum of 130g of protein a day.

Here is a similar view from Dr Donald Layman (Donald K. Layman; The Role of Leucine in Weight Loss Diets and Glucose Homeostasis, The Journal of Nutrition, Volume 133, Issue 1, 1 January 2003, Pages 261S–267S).

More recently, the overall contribution of dietary amino acids to glucose homeostasis received further support on the basis of quantitative evaluations of hepatic glucose production. Jungas et al. provided an elegant argument that amino acids serve as a primary fuel for the liver and the primary carbon source for hepatic GNG. Other investigators extended this thinking with the findings that endogenous glucose production in the liver is a critical factor in maintenance of blood glucose. After an overnight fast, GNG provides 70% of hepatic glucose release, with amino acids serving as the principal carbon source. These studies provide further evidence for a linkage between dietary protein and glucose homeostasis.

Continuing…

…a diet with low carbohydrates and increased protein would reduce the role of insulin in managing acute changes in blood glucose and maximize the liver's role in regulating blood glucose through hepatic GNG.

We need additional protein in a low carb diet to provide the substrate for GNG.

There are quite a few interesting overfeeding studies. The typical format of these studies is to take subjects and first determine the caloric intake to keep them in energy balance (weight stable). The study will then increase one of the three macronutrients (fat, carbohydrate or protein) and then look at the effects. Often studied are fat accumulation, body composition changes or blood lipids. The change is then attributed to the changed macronutrient.

Both fat and carbs are shown to increase weight and make body composition worse. Protein has been shown to not increase weight and increased protein improves body composition.

The problem I have with the study methodology is that the changes can't all be attributed to the increased macronutrient alone since the increased macronutrients interacts with the other baseline macronutrients.

Take as an example a baseline diet which provides 25% of calories from protein, 50% from carbohydrates and 25% from fat. For a 2000 calorie a day person that's 500 calories from protein (125g), 1000 calories from carbohydrates (250g) and 500 calories from fat (55.6g).

Adding 500 calories a day of fat, for instance would change the fat from 500 calories to 1000 calories (111g) while leaving the carbohydrates and protein at the same amounts. So if there's an increase in body fat how much of a change in body fat can be attributed to the fat alone? How much of the increase in weight is due to the interaction between fat and, say, carbohydrates? Perhaps there's a carbohydrate/fat limit where if you exceed the amount of carbs/fat it causes much more fat storage due to the combination of the two?

Low Carb Diet Reduces the Variables

The Low Carb Diet essentially reduces the three [macronutrient] variables to two. The calories from carbohydrates are typically 5% on a very low carb diet. So the only two macronutrients left are protein and fat. Yet, even this is no guarantee for weight loss. There are people (think Jimmy Moore) who eat on the very low protein and high fat end. There are others (think Ted Naiman) who eat on the higher protein and lower fat end.

Jimmy and Ted

Clearly, what Jimmy is doing isn't working well for Jimmy and what Ted is doing is working quite well for Ted. Jimmy is an n=1 for overeating fat. Ted is an n=1 for eating more protein. However, Ted controls for total calories and Jimmy seems to have no clue how many calories he eats in a particular day.

The difference may be exercise. It may be diet. I have a hard time finding a picture of a higher protein advocate who looks like Jimmy but I can find plenty of keto personalities who eat a lot of fat and look more like Jimmy (the Two Keto Dudes comes to mind).

A Fear of Protein?

Jimmy and others have been afraid of protein with the fear that eating protein causes the protein to turn to chocolate cake (Jimmy is infamous for making the comparison to chocolate cake at one point). I've looked at this subject in many posts in this BLOG (Protein does not turn into chocolate cake).

Ted says he spends most of his day trying to convince diabetics that they should eat more protein. It is true that protein does raise blood sugar by a small amount in a diabetic but the benefits outweigh that small rise and if a person is not a diabetic protein will lower blood sugar (Glucose Response to Protein).

Problem with Protein Studies

Protein studies are used to determine protein requirements. These studies look at nitrogen balance which is either negative (the person isn't getting enough nitrogen from their diet) or positive (the person is getting enough nitrogen from their diet).

The problem is that protein studies are based on so-called "balanced" diets where carbohydrates are available to make the amount of glucose required by the body (Low Carbs and Gluconeogenesis). These studies don't include the effects of gluconeogenesis (GNG). If you are eating low carb then protein provides the substrate materials (from your diet) for (GNG). For diabetics their body is already really good at making glucose via GNG (Gluconeogenesis – Later Thoughts).

If you barely eat enough protein to meet the minimum (nitrogen replacement) requirements then your body will get it's GNG needs from fat. Suppose that the body requires 120g of carbohydrates per day for the brain and other essential organs. If you eat 20g of carbohydrates a day that's 100 short. If half the protein gets converted to glucose and your body requires 200g of protein to provide that glucose. (Note these are very rough numbers but the idea applies).

So, if you are on a low carbohydrate diet you need more protein than just your replacement needs. You also need protein to meet your GNG needs.

Many Ways to Lose Weight

There are quite a few ways to lose weight. Most of them involve eating less calories than you burn. You can lose weight with Low Fat or Low Carb diets. You can even lose weight with a Low Protein diet. All of these work if you are at a caloric deficit. High fat and high carbs at the same time don't work at the same time unless your goal is weight gain.

Also, there's an interaction with the macronutrient type. Some macronutrients encourage fat gain. Truthfully, fat is always stored easily as fat – but only accumulates in a caloric surplus. You burn off what you eat if you are in fat balance. If you eat less fat you lose body fat. If you eat more fat you will gain body fat.

Even people who eat a carnivore diet are eating a large portion of their calories as fat. As an example: Ribeye Steak from Walmart has 22g of protein and 20g of fat in an 4 oz serving. That's 88 calories from protein and 180 calories from fat. Or 33% of calories from protein and 67% of calories from fat.

Consuming large amounts of fat is unavoidable in the weight maintenance portion of Low Carb diets. There's a top limit on the amount of protein that you can/should eat. As an example, if you are eating 1 g of protein per lb of body weight and you weigh 200 lbs that's 200 gram of protein or 800 calories. The rest of your daily caloric needs will then come from fat.  If you are eating 2000 calories a day that's 1200 calories from fat.

The problem is that many people, like Jimmy Moore, eat at a maintenance or higher level of calories and macros when they need to be in a weight loss phase. Jimmy eats low protein and carbs so it's not protein or carbs that are making Jimmy fat. The extra fat that Jimmy eats accumulates as fat when he eats more calories from fat regardless of whether he avoids carbohydrates or not. Fat doesn't magically vanish when you eat it and it doesn't require much energy to store -it is about 95% efficient to store fat (Eat Too Much Fat – Get Fat).

Maximizing Weight Loss

The only way for someone like Jimmy to lose weight is to get enough protein and limit dietary fat. If Jimmy has a goal weight of 200 lbs he should eat 200 grams of protein spread over four meals a day of 50 grams per meal  (Protein Gurus – Part 2). That maximizes Muscle Protein Synthesis and provides enough substrate to maintain his blood glucose. Jimmy should then eat enough fat to cover the amount he won't be eating from his body. Jimmy has at least 100 lbs of fat mass and could easily have a 3000 calories a day deficit. It wouldn't be at all pleasant but he could do it.

If you want to find out what you can do on a maximum fat loss diet, check out our Keto calculator.

Improved Overfeeding Studies

So how would you improve an overfeeding study? I would isolate the macronutrients and absolutely minimize the other macronutrients. Do a lean protein study (essentially a PSMF study) with variable protein levels. I'd do a carbohydrate variation study with minimal protein and fat. I'd do a fat level study with minimal carbs and protein. All of them in isolation. Wouldn't be a very balanced diet at 90%, 5%, 5%. Couldn't be too long a term. May not pass ethics boards. But it could tease out the interactions between the macronutrients.

There's the common view of obesity that it's due to increased fat and/or carbs in the American diet. And the statistics bear out that increase (Gregory L Austin, Lorraine G Ogden, James O Hill; Trends in carbohydrate, fat, and protein intakes and association with energy intake in normal-weight, overweight, and obese individuals: 1971–2006, The American Journal of Clinical Nutrition, Volume 93, Issue 4, 1 April 2011, Pages 836–843):

The prevalence of obesity increased from 11.9% to 33.4% in men and from 16.6% to 36.5% in women. The percentage of energy from carbohydrates increased from 44.0% to 48.7%, the percentage of energy from fat decreased from 36.6% to 33.7%, and the percentage of energy from protein decreased from 16.5% to 15.7%.

There's an interesting note:

In NHANES 2005–2006, a 1% increase in the percentage of energy from protein was associated with a decrease in energy intake of 32 kcal (substituted for carbohydrates) or 51 kcal (substituted for fat).

What is the Protein Leverage Hypothesis?

The central claim is that protein is being displaced by increasing amount of carbs and fat. From this paper (Alison K. Gosby , Arthur D. Conigrave, Namson S. Lau, Miguel A. Iglesias, Rosemary M. Hall, Susan A. Jebb, Jennie Brand-Miller, Ian D. Caterson, David Raubenheimer, Stephen J. Simpson. Testing Protein Leverage in Lean Humans: A Randomised Controlled Experimental Study. PLoS ONE 6(10): e25929.):

The 'protein leverage hypothesis' proposes that a dominant appetite for protein in conjunction with a decline in the ratio of protein to fat and carbohydrate in the diet drives excess energy intake and could therefore promote the development of obesity.

The study found:

In our study population a change in the nutritional environment that dilutes dietary protein with carbohydrate and fat promotes overconsumption, enhancing the risk for potential weight gain.

Here's the chart showing the differences:

From the study:

Simpson and Raubenheimer (Simpson, S. J. and Raubenheimer, D. (2005), Obesity: the protein leverage hypothesis. Obesity Reviews, 6: 133-142.) used data from the FAOSTAT [5] nutrient-supply database to show that an estimated decrease in percent dietary protein from 14% to 12.5% between 1961 and 2000 in the USA was associated with a 14% increase in non-protein energy intake, with absolute protein intake remaining almost constant.

Some guys in a Facebook group asked me for my opinion about the "Beef and Butter Fast" diet (How to Break a Weight Loss Stall on the Ketogenic Diet). It is said to be a "four day diet to kickstart weight loss". Let's take a look at the lower calorie option. Here's the graphic for the diet.

The lower calorie option is 979 calories. 65% of calories from fat and 33% of calories from Protein. I am not sure where the other 2% went (hidden carbs maybe?).

It looks like this probably uses drained ground beef. 7 teaspoons of butter is 234 calories of fat. 2.5 cups of Ground Beef is 780 calories (fat and protein). That's why I say this must be drained since the total is 1015 calories not 979 calories.

What About the Protein?

The protein in 2.5 cups of Ground Beef is 77g. That's fairly low depending on body weight. If you are a 220 lb person (100g) that's just below the minimum 0.8 g/kg Dietary Reference Intake. If you are heavier you are not even meeting the minimum amount of protein for your current body weight.

More important than the total amount is the amount of protein per meal. There's no protein in the breakfast (it's fat only). 1 cup of ground beef provides 2.4 g of Leucine so there's not probably enough protein in the lunch to reach the Leucine Threshold for Muscle Protein Synthesis (particularly for older men). There's just enough protein in the dinner to reach the Leucine threshold for Muscle Protein Synthesis.

Not hitting the Leucine threshold means that the protein is not used for extra Muscle Protein Synthesis. Essentially the protein is just more calories. One meal a day of sufficient protein is a loss of a day that could be spent building up lean body mass.

So Do I Agree with this Diet?

For some Keto people this diet will be an improvement. The extra fat probably won't help people who already have enough body fat but for someone who is already leaner they will need extra fat.

A monotonous diet has advantages in making you feel less hungry to overeat.

The Protein to Non-Protein energy ratio isn't great since it's a maintenance diet rather than a weight loss diet (with lower fat). The reduced calorie intake should yield a loss of weight for most overweight people.

Is There a Better Choice?

A Protein Sparing Modified Fast is a better choice. Eat 1g of protein per lb of body mass. Eat low carbs (<20g a day). Eat much lower fat.

220 lb man example

Macros BBF PSMF
Protein 77 220
Fat 76 20
Carbs 20 20
Calories 1072 1140

Due to the Thermic Effect of Food, the calories of the two are closer than the numbers shown. In fact, the actual calories are less since the TEF for protein is 20-35%. I believe that the PSMF is a much better choice, particularly for preservation of LBM.

Much of the popular press writes that we should eat more meals a day. As an example (How Much Protein for Strength and Mass Gains?):

total protein amount should be spread out over 5 to 6 intakes a day

They advise the amount of protein to be:

For males, who aim at increasing muscle mass and strength gains, if you only train once a day, 2 g a kg should be more than enough (for women 1.2g /kg of bodyweight).

Let's do the math here. Suppose someone is 75 kg (about 165 lbs). At 2g/kg that would be 150 grams of protein per day. If they eat 5 meals a day that would be 30 grams of protein per meal. The problem is that they will probably not ever reach the Leucine threshold at any of the meals (Protein Gurus – Part 2). As a result they will never maximize muscle protein synthesis.

Also the timing between protein meals should be 5 hours and that would be 25 hours of eating in a day. Doesn't quite fit.

My current optimized method is three protein meals a day spread out by five hours (Muscle Protein Synthesis Meal Spacing Maximum). This can be challenging and does require advance planning for meals.

I think that the Alpert number may not be right if you are on a Low Carbohydrate diet.

The Alpert number is the maximum rate of fat oxidation from a relatively moderately active person (Hypophagia – How much fat can I lose in a day?). It occurred to me that I can check this number from my own VO2max test.

  • Looking at the REE at rest (REE from VO2max) it shows 2.16 kCal/min.
  • From my Bod Pod results (Overshot My Recomp Goals – Part 1) my fat mass is 12.3 lbs.
  • Multiplying my fat mass times the Alpert number is 381.3 kCals/day. That's 15.88 kCal/hr or 0.26 kCal/min.

Yet, my REE was 2.1 kCal/min  at and RER of 0.73 (90% fat) which is 1.9 kCal/min from fat oxidation. Flipping the number around that's 1.9 times 60 times 24 = 2736 kCal per day from fat.

The smallest number I saw in the resting period was 1.209 kCal/min or 1740 kCal/day. dividing 1740 number by my fat weight in lbs is 141 kCal per lb of fat mass. That's quite a bit more than the Alpert number.

The Minnesota Starvation (Ancel Keys) data was the basis of the Alpert number. Perhaps the difference is in the idea that I am not actually in starvation? And the Minnesota Starvation subjects were fed carbohydrates in their diet.

The Alpert number pretty closely matches my own experiences in Protein Sparing dieting.

How about neither? How about if the magic is in the increased protein content of LCHF diets? That was the question that this study sought to unravel (Stijn Soenen, Alberto G. Bonomi, Sofie G. T. Lemmens, Jolande Scholte, Myriam A. M. A. Thijssen, Frank van Berkum, Margriet S. Westerterp-Plantengaab. Relatively high-protein or 'low-carb' energy-restricted diets for body weight loss and body weight maintenance? Physiology & Behavior. Volume 107, Issue 3, 10 October 2012, Pages 374-380.).

Design

Body-weight (BW), fat mass (FM), blood- and urine-parameters of 132 participants (age = 50 ± 12 yr; BW = 107 ± 20 kg; BMI = 37 ± 6 kg/m2; FM = 47.5 ± 11.9 kg) were compared after 3 and 12 months between four energy-restricted diets with 33% of energy requirement for the first 3 months, and 67% for the last 9 months: normal-protein normal-carbohydrate (NPNC), normal-protein low-carbohydrate (NPLC); high-protein normal-carbohydrate (HPNC), high-protein low-carbohydrate (HPLC); 24 h N-analyses confirmed daily protein intakes for the normal-protein diets of 0.7 ± 0.1 and for the high-protein diets of 1.1 ± 0.2 g/kg BW (p < 0.01).

Results

BW and FM decreased over 3 months (p < 0.001): HP (− 14.1 ± 4 kg; − 11.9 ± 1.7 kg) vs. NP (− 11.5 ± 4 kg; − 9.3 ± 0.7 kg) (p < 0.001); LC (− 13.5 ± 4 kg; − 11.0 ± 1.2 kg) vs. NC (− 12.3 ± 3 kg; − 10.3 ± 1.1 kg) (ns). Diet × time interaction showed HPLC (− 14.7 ± 5 kg; − 11.9 ± 1.6 kg) vs. HPNC (− 13.8 ± 3 kg; − 11.9 ± 1.8 kg) (ns); NPLC (− 12.2 ± 4 kg; − 10.0 ± 0.8 kg) vs. NPNC (− 10.7 ± 4 kg; − 8.6 ± 0.7 kg) (ns); HPLC vs. NPLC (p < 0.001); HPNC vs. NPNC (p < 0.001). Decreases over 12 months (p < 0.001) showed HP (− 12.8 ± 4 kg; − 9.1 ± 0.8 kg) vs. NP (− 8.9 ± 3 kg; − 7.7 ± 0.6 kg) (p < 0.001); LC (− 10.6 ± 4 kg; − 8.3 ± 0.7 kg) vs. NC (11.1 ± 3 kg; 9.3 ± 0.7 kg) (ns). Diet × time interaction showed HPLC (− 11.6 ± 5 kg ; − 8.2 ± 0.7 kg) vs. HPNC (− 14.1 ± 4 kg; − 10.0 ± 0.9 kg) (ns); NPNC (− 8.2 ± 3 kg; − 6.7 ± 0.6 kg) vs. NPLC (− 9.7 ± 3 kg; − 8.5 ± 0.7 kg) (ns); HPLC vs. NPLC (p < 0.01); HPNC vs. NPNC (p < 0.01). HPNC vs. all other diets reduced diastolic blood pressure more. Relationships between changes in BW, FM, FFM or metabolic parameters and energy percentage of fat in the diet were not statistically significant. Metabolic profile and fat-free-mass were improved following weight-loss.

Also (A. K. Gosby A. D. Conigrave D. Raubenheimer S. J. Simpson. Protein leverage and energy intake. Etiology and Pathophysiology, 28 October 2013).

…these trials encompassed considerable variation in percent protein (spanning 8–54% of total energy), carbohydrate (1.6–72%) and fat (11–66%). The data provide an opportunity to describe the individual and interactive effects of dietary protein, carbohydrate and fat on the control of total energy intake. Percent dietary protein was negatively associated with total energy intake (F = 6.9,P < 0.0001) irrespective of whether carbohydrate (F = 0,P = 0.7) or fat (F = 0,P = 0.5) were the diluents of protein. The analysis strongly supports a role for protein leverage in lean, overweight and obese humans.

Here is another cross-over study showing the advantage of the keto diet over a medium carbohydrate diet (Johnstone AM, Horgan GW, Murison SD, Bremner DM, Lobley GE. Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. Am J Clin Nutr. 2008 Jan;87(1):44-55.).

Ad libitum energy intakes were lower with the LC diet than with the MC diet [P=0.02; SE of the difference (SED): 0.27] at 7.25 and 7.95 MJ/d, respectively. Over the 4-wk period, hunger was significantly lower (P=0.014; SED: 1.76) and weight loss was significantly greater (P=0.006; SED: 0.62) with the LC diet (6.34 kg) than with the MC diet (4.35 kg). The LC diet induced ketosis with mean 3-hydroxybutyrate concentrations of 1.52 mmol/L in plasma (P=0.036 from baseline; SED: 0.62) and 2.99 mmol/L in urine (P<0.001 from baseline; SED: 0.36).

These men were allowed to eat as much as they wanted but chose to eat less when they were given Low Carb food.

I did a short Protein Sparing Modified Fast (PSMF) back in March (PSMF March 2018). This is a summary of the results.

Maximum Fat Loss Dietary Macros (From KetoCalc)

Protein: 115.0 g (459.9 cals), 36.8% of calories
Carbs: 20 g (80 cals), 6.4% of calories (from leafy green vegetables)
Fat: 78.9 g (710 cals), 56.8% of calories
Initial Maximum Fat Loss: 0.30 lbs per day
At this limit you will use 1063 calories from your body fat per day.

Weight Loss on PSMF

Macros on PSMF

Blood Glucose on PSMF

Some Typical Day's Foods on PSMF

3-15-2018

3-16-2018

3-19-2018

3-20-2018

3-21-2018

3-22-2018

3-23-2018

If the Insulin Theory of Obesity is correct then my question for Richard Morris, Jimmy Moore, and other obese Low Carb luminaries is:

@richard I am curious about your podcast intro. You say that all signs of disease are gone but I've also heard you state that your Fasting Insulin is high. That would suggest that at least one of the markers of Insulin Resistance is still present. Is that a concern for you and what are you doing to try and reverse that? Would further weight loss help? (I know you and Carl both say weight loss isn't necessarily your goal). I know you ride your bike quite a bit so that sort of intervention seems only so helpful in your case.

Two of the signs of metabolic syndrome are waist circumference and fasting insulin levels. Richard and Jimmy have both stated they have high fasting insulin levels and they both have substantial waist circumferences.

My contention is that weight loss is necessary in order to lower fasting insulin. And yes, it is true that higher fasting insulin levels make it much harder to lose weight. Note I did not say impossible, just much harder. But they also make it much more important to lose weight.

Here's evidence that fasting Insulin correlates to BMI. A great place for an answer to this question to look is very young people. There was an interesting study which looked at seven year old children (Hrafnkelsson H1, Magnusson KT, Sigurdsson EL, Johannsson E. Association of BMI and fasting insulin with cardiovascular disease risk factors in seven-year-old Icelandic children. Scand J Prim Health Care. 2009;27(3):186-91.). Here's what they learned in these young children:

Some 14% of the participating children were classified as overweight. Overweight children had higher fasting insulin, higher fasting glucose, and higher systolic and diastolic blood pressure. Furthermore, they had significantly lower total cholesterol (TC), lower high-density lipoprotein (HDL), and lower low-density lipoprotein (LDL) but a similar TC/LDL ratio to normal-weight children. The factors that were strongly associated with BMI were serum fasting insulin, systolic blood pressure (SBP), HDL and fasting glucose, while the sum of four skinfolds, triglycerides, glucose, and LDL were highly associated with fasting insulin.

The LDL part is interesting (but not the subject of this thread).

BMI and fasting insulin are clearly correlated. Does one cause the other? Probably.  Does it actually matter? If lazy ket0 isn't working then look around. Protein Sparing Modified Fasts are a special case of keto with low fat and low carbs. But the high fat kings won't try them (recent pictures of Left to Right Richard Morris, Carl Franklin, and Jimmy Moore). As far as I know none of these guys will post their food diaries. In fact, they seem to not track their food intake.

Again, this is not intended to ridicule any of these men. Rather, it is to question their dietary advice. They are all low protein and high fat advocates. And it worked for them. Until it didn't work.